Primal-Dual Subgradient Method for Huge-Scale Linear Conic Problems
نویسندگان
چکیده
In this paper we develop a primal-dual subgradient method for solving huge-scale Linear Conic Optimization Problems. Our main assumption is that the primal cone is formed as a direct product of many small-dimensional convex cones, and that the matrix A of corresponding linear operator is uniformly sparse. In this case, our method can approximate the primal-dual optimal solution with accuracy ε in O ( 1 ε2 ) iterations. At the same time, complexity of each iteration of this scheme does not exceed O(rq log2 n) operations, where r and q are the maximal numbers of nonzero elements in the rows and columns of matrix A, and n is the number variables.
منابع مشابه
Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods
In this paper, we study methods for generating approximate primal solutions as a by-product of subgradient methods applied to the Lagrangian dual of a primal convex (possibly nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal problems with a favorable dual problem structure that leads to efficient implementation of dual subgradient methods, such as ...
متن کاملDynamic Subgradient Methods
Lagrangian relaxation is commonly used to generate bounds for mixed-integer linear programming problems. However, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization is no longer possible. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically selec...
متن کاملOn implementing a primal-dual interior-point method for conic quadratic optimization
Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic quadratic optimization problems can ...
متن کاملDual versus primal-dual interior-point methods for linear and conic programming
We observe a curious property of dual versus primal-dual path-following interior-point methods when applied to unbounded linear or conic programming problems in dual form. While primal-dual methods can be viewed as implicitly following a central path to detect primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move away from the analytic center of the set of infe...
متن کاملFinding Approximate Solutions for Large Scale Linear Programs
Linear Programming is one of the most frequently applied tools for modeling and solving real world optimization problems. Nonetheless, most commercially available solvers are often incapable of dealing with large problem sizes, e.g. millions of variables or hundreds of thousands of constraints, arising in modern applications. To cope, researchers have applied decomposition methods, in particula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014